If it's not what You are looking for type in the equation solver your own equation and let us solve it.
97=195t-16t^2
We move all terms to the left:
97-(195t-16t^2)=0
We get rid of parentheses
16t^2-195t+97=0
a = 16; b = -195; c = +97;
Δ = b2-4ac
Δ = -1952-4·16·97
Δ = 31817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-195)-\sqrt{31817}}{2*16}=\frac{195-\sqrt{31817}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-195)+\sqrt{31817}}{2*16}=\frac{195+\sqrt{31817}}{32} $
| 4/x+9=9/x+5 | | -2(2y+7)+3y=14 | | 15y^2+16y+6=0 | | 2(x-3)=3x-13 | | Y^2-15y-46=0 | | 8a+6+8a+6+9a+10+9a+10=304 | | 8n=6/7 | | 6=3y-y | | 5x+14=3x-10 | | x+2+x-2+x+2+x-2=24 | | 30=3z-4z | | 5a+9+5a+9+5a+9+5a+9=116 | | (14+x)(3)/6=11 | | 12=6(m-10) | | (14+x)(3)/6=0 | | -32+4s=8(9s-7) | | 1/2(8-x)=8-x | | 14+x*3/6=11 | | 16x=4x+184 | | 3.24x+3.24x+8.37x+8.37x-8.09=7.83 | | -6-4(1+9y)=30 | | P+2(p-1)=8.3 | | 4x+6x=34-6 | | 3.24x+3.24x+8.37x+8.37x-8.09-8.09=7.83 | | H=4x+6 | | 6x+5/2=41 | | 3(5x-6)=16 | | 5z+12=2z+36 | | 130+0.20x=70+.0.40x | | y=-0.1+8.4 | | 8v^2+10=-v | | 4^(2x+1)=1024 |